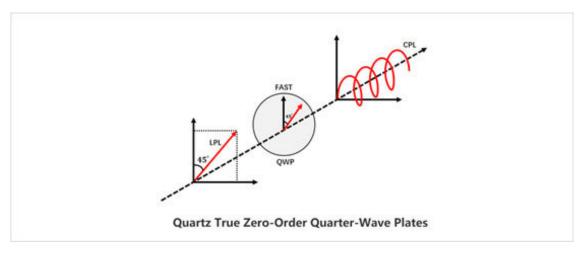


石英真零级四分之一波片

描述

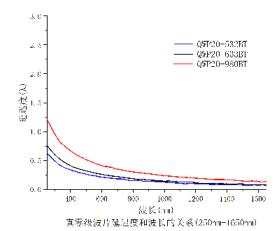

CRYLINK石英真零级四分之一波片由单片石英晶体制作而成,厚度在微米量级,机械强度低,但允许较大的入射角度。 当一束线偏振光垂直入射到由单轴晶体制成的波片时,在波片中分解为沿原方向传播但振动方向互相垂直的o光和e光, 相应的折射率为n o、n e。

由于两种光在晶体中的速度不同,当通过厚度为d的波片后产生的相位延迟量为 $\delta=(2\pi/\lambda)|n\ o-n\ e|^*d$ 。其中 $|n\ o-n\ e\ |^*d$ 为光程差,二分之一波片产生的光程差为 $(2m+1)\lambda/2$,相位延迟量 $\delta=(2m+1)^*\pi$,m为非负整数,真零级二 分之一波片的m为0。CRYLINK石英真零级二分之一波片常用于旋转线偏振光的偏振方向,相比于石英多级波片,石英 真零级波片对温度和入射角度不敏感,适用于高功率场景。

特点

- 对温度和入射角度不敏感
- 适用于高功率场景
- 安装有机械外壳,不可拆卸
- 提供多种定制服务

光路图



石英真零级四分之一波片

基本参数

设计波长	520 nm-1550 nm可选
型号	PB07006
石英晶体	25.4 mm
机械外壳厚度	4.79 mm
延迟量	λ/4
增透膜	R<0.25%a@设计波长 (6°入射角,单面)
光学元件材质	石英晶体
表面平行度	<3 arcsec
机械外壳直径公差	+0.0/-0.1 mm
通光孔径	Ø20.0 mm
镀膜	V型增透膜
表面光洁度(划痕/麻点)	10/5

真零级波片延迟度

